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Abstract 

In multiterminal estimation the basic theoretical question is to prove the existence of encod- 
ing and decoding schemes that can achieve a certain rate of compression, while resulting in a 
particular statistical estimation efficiency. This is by comparison a much less studied field than 
multiterminal source coding. Essentially, only two approaches have been reported. Zhang and 
Berger [3] established an upper bound on the asymptotic estimation efficiency under certain 
rate-compatibility constraints, and a test channel constraint referred to as the solvability condi- 
tion. Han and Amari [2] tightened the upper bound under weaker constraints on both the rates 
and the test channel distributions. However, their bound is in most cases prohibitively complex 
to compute. Here we unify the two approaches. We are able to construct an upper bound that 
is asymptotically equal to Han and Amari's bound, under the same rate compatibility condi- 
tions. Our bound is valid under weaker constraints on the test channels than those of Zhang 
and Berger. Moreover, the bound is easily computed for most source distributions. We also 
present a new geometric interpretation of the upper bound on asymptotic estimation efficiency. 

1    Introduction 

Assume that the sources Xn and Yn are i.i.d. according to Pe{x,y), where 9 is a (possibly vector 
valued) parameter. We assume the existence of an estimator 9(Xn,Yn) which is asymptotically 
unbiased. We assume the estimator has an asymptotic (co)variance index V(6) where 

\imonV(0(Xn,Yn)) = V(6), 

a quantity that depends on the true value of 6. If we restrict the transmission rate of source X to 
.Ri bits, and the rate of source Y to i?2 bits, how much estimation efficiency of the parameter 0 can 
we hope to retain? We encode the data strings with encoding functions / and g respectively and 
form an estimator 9(f(Xn),g(Yn)), where we place the following rate constraint on the encoding 
functions; 

£log(||/||)<Äi, ^log(|M|)<i?2, 
ft lb 

where ||.|| denotes the cardinality. We assume that the estimator 9(f(Xn),g(Yn)) is asymptotically 
unbiased and that there exists a (co) variance index 

lim nV(9(f(Xn),g(Yn))) = V(9\RUR,). 
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The compression of the data sources leads to a loss of information about the parameter 9 such that 

V(0\R1,R2)>V(0). 

However, if this loss of estimation efficiency is minor compared to V{0) itself, we can conclude that 
compression does not seriously affect estimation. 

2    The approaches of Zhang and Berger and Han and Amari 

To prove the existence of encoding functions / and g and estimators 0 that achieve a certain covari- 
ance index V(0\Ri, R2) for given rate constraints, two approaches exist, by Zhang and Berger (1988) 
and Han and Amari (1995,1998), respectively. They are similar with respect to the information 
theoretic coding arguments used, but widely different in the approach to establishing the achievable 
covariance index of a given code. Han and Amari provide an upper bound on the covariance index, 
which is tight if the optimal coding function / and g are given. The bound is difficult to compute 
for even quite simple data source distributions. Zhang and Berger give an upper bound which 
exceeds, or equals the bound of Han and Amari. They place stronger constraints on the encoding 
functions. Even so, their bound is simple to compute and applies to continuous data sources. 

The existence of encoding functions / and g that provide 'good' estimates for a parameter 0, 
are proven via universal coding arguments. For simplicity we will restrict the discussion to discrete 
data sources. Recall that the data type is used to denote the relative frequencies of each letter 
outcome in a data string. Thus if data source X is distributed over alphabet {1,2,...., M} the type 
of the data string Xn is 

t{Xn) = (£ 1{W}, £ l{Xi=i}, • • •, £ l{Xi=M})/n. 
i=l i=l i=l 

We can introduce joint types for Xn, Yn, and conditional types in a similar fashion. The standard 
approach in information theory to proving existence of effective codes is to introduce auxiliary 
variables, which form a collection of codewords for each data source. These auxiliary variables or 
codewords U and V are generated according to the "test channel" distributions defined by p$(u\x) 
and pe(v\y). The auxiliary variables and the data sources thus form a Markov chain; 

U ->• X -> Y -» V. 

The test channel distributions depend on 0 only through the marginal distributions pg(x) and pg(y) 
respectively. Since the true value of 0 is unknown we approximate the test channels by ptx(u\x) 
and ptY(v\y)i where tx,ty are the marginal types of the data sequences Xn and Yn. We construct 
a large set of such codewords for each data type and use a random mapping assignment to members 
of the codebooks. This is the first step of encoding. It can be shown that the rate constraints map 
into restrictions on the test channel distributions. Zhang and Berger (1988) proved the existence of 
codes /, g under the rate constraints imposed by the random codebook mapping with exponentially 
decaying encoding error probability; 

Ri>I{U;X), R2>I{V;Y). 

Han and Amari (1995, 1998) showed that these rate-compatibility constraints can be weakened by 
adding a second step of encoding. The regular encoding argument (X -» U, Y ->■ V) is followed 



by the binning of codewords U and V, and minimum-entropy decoding. The resulting constraints 
on the test channels can be expressed through the following inequalities; 

Ri>I{U;X\V), R2>I(V;Y\U), Ri + R2 > I(U,V;X,Y). 

I(U;X|V)   I(U;X) 
Ri 

Figure 1: Rate compatibility conditions for the methods of Zhang and Berger (ZB), Han and Amari 
(HA). 

Given encoding functions / and g we can construct an estimator 0(f(Xn),g(Yn)). Here the 
encoding functions are either the result of the first encoding step (Zhang and Berger), or the first and 
second step and minimum entropy decoding (Han and Amari). We want to determine the covariance 
index of the estimator 0(f,g). All the information about the parameter 6 can be deduced from the 
observed (and decoded) data type tuxYV- Han and Amari form the maximum likelihood estimate 
based on the distribution pe(tuxYv)- By construction, the test channels place constraints on the 
data type tuxYV- Han and Amari formulate these constraints through a projection operator H on 
the space of data types (marginals and joint). This generalized MLE is elegant and provides an 
upper bound bound on estimation efficiency of estimators 6(f(Xn),g(Yn)) given a rate constraint 
{Ri,R2), i.e.; 

V(6\RUR2) < VHA(6\RUR2) = (i^tf))"1 + 0{n-1l2), 

where Fg is the Fisher information with respect to pg(tjjXYv), a function of the projection matrix 
H. However, forming the projection operator H is no small feat, even for such limited and simple 
cases as binary data sources. Computing the bound on estimation efficiency using the techniques 
of Han and Amari (VHA(ö\RI, R2)), is therefore prohibitively complex for larger source alphabets, 
and moreover it is unclear whether this approach can be extended to continuous data sources, even 
in an abstract form. 

Zhang and Berger (1988) construct their bounds on estimation efficiency by computing the 
ensemble mean and variance over the randomly generated codebooks (first step of encoding). Their 
argument is only valid for additive estimators, i.e. estimators such that 

n 
4=1 



holds. Moreover, they assume that an additive estimator based on the encoded data can be obtained 
as the solution to the linear equation system 

J2pe(u\x)pe{v\y)0(u, v) = 0(x, y), \/x, y. 
u,v 

This puts a very limiting constraint on the test channel distributions, but the additivity of the 
estimator 0(f(Xn),g(Yn)) follows. For such additive estimators, a repeated random coding argu- 
ment ensures the existence of encoder functions and estimators, whose means and variances come 
arbitrarily close to the ensemble quantities. Zhang and Berger thus avoid the construction of the 
data type distribution. In fact, computation of the efficiency bounds only requires moments under 
distribution pg(UXYV) (in contrast to pg(tuxYv) for VJJA)- Zhang and Berger's upper bound on 
the asymptotic efficiency equals 

V(e\R1,R2)<VZB(e\R1,R2) = 

= V(0(U, V)) + E[E{0\X)f + E[E(0\Y)f - E[E{0\UX]2 - E[E(9\VY]2 + 0(n~1/2). 

3    Extending Zhang and Berger's approach 

The limitation of Han and Amari's approach lies in the complexity of the distribution pg(tuxw)- 
The solvability condition, and the one-step encoding limits the approach of Zhang and Berger. In 
order to construct computable efficiency bounds we choose to extend the approach of Zhang and 
Berger. We place the following constraints on the test channel distributions. Assume an exponential 
family source distribution pg(x, y). Restrict the test channels pg{u\x) and pg(v\y) to map to another 
exponential family distribution pg(u,v) such that Ig(U,X) > 0,Ig(V,Y) > 0 holds. Refer to the 
canonical parameters of pg(u, v) as 77. Note that 77 is not equal to 77', the canonical parameters 
of pe(x, y). However, a reparameterization of pg(x,y) with parameters rj,S is in general possible. 
In e.g. the multinomial case 77 may correspond to linear combinations of outcome probabilities. 
Assume the existence of functionals h : rj -> 0 (where both t] and 0 may be vector valued) such that 

I<^j4-,%i, ••>% ~,Vj, -)l < °°> v*)i> 9 = °) ->4- 

This restriction on the test channel distributions is stronger than Han and Amari who only need 
assume the existence of bounded and continuous first order derivatives of pg{u\x) with respect to 
p$(x) (and similarly for y). However, it is weaker than solvability condition, and can easily be 
verified in practice. 

We compute the decoder ensemble moments of estimators 77, which are additive and asymp- 
totically efficient. Using the decoder ensemble mean allows us to extend Zhang and Berger's rate 
compatibility region (Fig. 1) to that of Han and Amari. The binning of codewords and minimum 
entropy decoding is an additional random step over which to average. Under the rate compatibility 
conditions 

#1 >I(U;X\V), R2>I{V;Y\U), Rt + R2> I(U,V\X,Y) 

the encoder and decoder ensemble moments are asymptotically equal. For estimates of the canonical 
parameters we can thus establish a bound, which asymptotically coincides with the bound of Han 



and Amari since the ML estimates are indeed additive for 77. For now, let r\ be the parameter of 
interest. The asymptotic efficiency bound equals 

V(r,\R1,R2)<VeZB(v\Ri,R2)= (1) 

= V(fj(U,V)) - E[E(fi(U,V)\X) - E(fj(U,V)\UX)f - E[E(f,(U,V)\Y) - E(fi(U,V)\VY)f. 

The test channel constraints on the data type distribution, which in Han and Amari's work entered 
through the projection operator H, is now featured in the second and third term of VezB- The 
first term is the variance of the estimator based on encoded information when these constraints 
are ignored, i.e. under the marginal distribution Pr,{U, V). The second and third term reduces this 
quantity by, as we see below, the variances over the constructed test channels. 
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Figure 2: Geometric interpretation of the asymptotic estimation efficiency bound. 

We can rewrite VezB as follows, 

VezB = Eftg[V(fj(f,g)\f,g)]. 

Efi9 is an operator that corresponds to the ensemble mean over the decoded codebooks, / and g. 
We can identify the terms in equation (1) by those of a variance decomposition, 

VezB = Ef,g[V(v(f,9)\f,9)] = V{fi{f,g)) - Vf,g[E(fj(f,g)\f,g)} (2) 

The conditional expectation E(-\f, g) is a projection operator onto the orthogonal codebook compo- 
nents, since in the multiterminal setup the codebooks / and g are generated independently. Thus, 
the second and third term of equation (1) equal 

Vf,g[E(fl(L 9)\f, 9)] = Vf[E(f)(f, g)\f, g)f] + Vg[E(r)(f, g)\f, g)g], 

where the subscripts / and g denote the orthogonal components. A geometric illustration is shown 
in Figure 2. The quantity of interest is the ensemble mean of the variance of the estimator, 
Ef,g[V(fj(f,g)\f,g)]. Obviously, the marginal variance V(fj(f,g)) is an overestimate of this quan- 
tity since the codebook construction is known (i.e. determined by 0-rate quantities). Thus, this 
overestimate is corrected by removing the portion of the variance of 77 that we control, i.e. the 



variance over the constructed codebooks.   With independent codebook components we get the 
expression in equation (2). 

With the restriction placed on the test channels through the function h we can now construct 
a bound for an estimator 9 using the bound for f). By a delta-method argument we can show that 

V(9\R1,R2) < VeZB{9\Rl,R2) =     £     \dih(r,)\\V {rji{f, g)) - V/,5[£(?M/,</)!/,<?)]+ 

i,j:dijh(r])^:0 

The construction of the covariance bounds proceeds in a similar fashion to the above and is left 
out to conserve space. 

We conclude with a simple example. Assume a bivariate Gaussian model: pe(xn,yn), 9 = 
iPx) ayi P)- We use the test channels p(u\x) ~ N(x, CT

2
) and p(v\y) ~ N(y, a^) which maps between 

exponential families. The VezB bound still applies if we discretize (U, X, Y, V) to (U, X, Y, V), with 
the number discretization levels growing with the sample size n at rate 0(na), where a £ (|,1)- 
With a in this range the marginal types can still be transmitted at 0-rate, and the resulting 
summary statistics differ from those of the continuous distributions by no more than 0(n~l). Let p 
be the parameter of interest. It is easy to verify that the condition on h applies for this parameter 
and the given test channels. We compute the VezB bound as 

nV(P(h(f(X%g(Y»))) < (1 - P2)2 + (^y + ^^) + (^_ 1 ^_ J+ 

~p 42ßi - 1 + 22fi2 - 1 + 22ß2 (22fii - 1) + 22ßi(22fi2 _i)^ 

Zhang and Berger's bound is given by 

nV(p(f(X«),9(Yn)) < (1 + P2) + (ääSTTI + ^Ti) + (22^_122fl!-l)+ 

_ y    1     i     1    \ P  ^fll _ i + 22Ä2 _ ]/' 

which is obviously larger than VezB- Their bound also uses a suboptimal full-data estimator as 
the baseline for comparison, which is reflected in the first term (1 + p2). The interpretation of the 
bound is in this example particularly simple. It corresponds to estimating the parameter p from 
noisy Gaussian data when the signal-to-noise ratios, or equivalently the noise variances, are known. 
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